
How to build a PHP Search Engine
Kiril Iliev

How to build a PHP Search Engine

Introduction or a tale of how easy a search engine could work
Five years ago your site may have had five or six pages. However, over the time it has grown and one day
you wake up with 2 GB of content, more than a thousand links and no way to sort them by relevance. You
need a way for you and your visitors to get information about your services and products faster. A search
engine could help you and your site visitors find that precious piece of information on your extensively
growing site.

Anyway, let us explain how a search engine works in general. Typically, a search engine works by sending
out a ‘spider‘ to fetch as many documents as possible. Then another program, called an indexer, reads
these documents and creates an index based on the words contained in each document. Each search
engine uses a proprietary algorithm to create its indices such that, ideally, only relevant results are returned
for each query.

In the following tutorial we are going to create a PHP search engine with a MySQL database. We are
building our search engine on PHP 5.2.3. PHP 5.2.3 includes the latest additions such as embedded SQLite
database, support for the MySQL 4.1 client library with the introduction of the mysqli extension, etc.

PHP Search Engine

Why should we use MySQL? Well, this pretty gem will help us organize, fetch and store our data in a quite
simple way, so that we will not need to create our own spider and indexer. MySQL would do the hard work
for us!

Note: For information on how to install and configure MySQL on Windows you can refer to Gareth Downes-
Powell’s article “Installing MySQL on a Windows PC”.
For installing PHP 5.x.x on Windows you might want to refer to Allan Kent’s Article “Installing PHP 5 under
Windows”.

Ok, assuming that you have already installed PHP, MySQL with the appropriate server platform of your
choice, IIS or Apache, you have a fully operational web server. Now, let’s get into the details.

For the search engine we are going to build in this tutorial, I chose to use a table with 3 columns named ID,
title, and article, where I have stored the information the user will be searching for. You can enter some data
to your table or even make your own table. The ID field is the primary key for the table, while title and article
are fields in which we plan to search. To make it easier for you, I`ve prepared a query to create the table.
You just need to copy and paste the following code into the MySQL interface in a database. In order to do
that, access your PHPMyAdmin from your favourite browser, then select your database and table
respectively. There you should notice a tab named “SQL”. You have to paste the following code there:

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 1 of 10

http://en.wikipedia.org/wiki/Webcrawler
http://www.webopedia.com/TERM/S/index.html
http://www.webopedia.com/TERM/S/proprietary.html
http://www.webopedia.com/TERM/S/algorithm.html
http://www.webopedia.com/TERM/S/query.html
http://dmxzone.com/ShowDetail.asp?NewsId=6738
http://dmxzone.com/showDetail.asp?TypeId=28&NewsId=6774
http://dmxzone.com/showDetail.asp?TypeId=28&NewsId=6774

How to build a PHP Search Engine
Kiril Iliev

CREATE TABLE `news` (
 `id` tinyint(4) NOT NULL auto_increment,
 `title` varchar(200) NOT NULL default ‘‘,
 `article` text NOT NULL,
 UNIQUE KEY `id` (`id`),
 FULLTEXT KEY `title` (`title`,`article`)
) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=latin1 AUTO_INCREMENT=1;

Under the “Browse” tab you can see the entries in your table. In order to insert new entries go to “Insert” tab
and add new values to the fields Title and Article. Surely, you can extend your table and add additional
fields, or change the type of the current fields, in a whole to change the entire table for your own
convenience.

How are we going to proceed? We will start creating the search form, then setting up our connection to the
database, go through the search function itself, and finally test our search engine. In addition, we are going
to design additional features such as paging and displaying the search time.

Beginning of the search page…
Firstly let’s create our search page with a form where site visitors will enter keywords to search content. Let’s
open our favourite web editor and create a new page. Then insert a new form called searchbox and a
button with value Search. Finally save the page as Search.php. You may want to use the POST method
instead of the GET method for your form since it is more secure. For this tutorial I chose using the GET method
since this allows me to check if the search engine is working properly.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=“Content-Type” content=“text/html; charset=utf-8” />
<title>Untitled Document</title>
</head>

<body>
<h1>Search Engine with PHP</h1>
<form method=“get” action=“ “>
 <input type=“text” name=“search_term” title=“Search…” value=“Search...”>
 <input type=“submit” name=“search” title=“Search Now!
 “value=“Search” class=“searchbutton” />
</form>
</body>
</html>

As you can see this is just simple code for a form with a text field and a button.

Connecting...

Now let’s make the connection string. Open a new PHP document, name it connectionstring.php and save
it in the same directory in which Search.php is located. For example, you can name it
MySearchEngineWithPHP. Later on you will upload the entire folder to your server. Add the following code to
connectionstring.php:

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 2 of 10

How to build a PHP Search Engine
Kiril Iliev

<?php
 $hostname_MyConnectionPHP = “localhost”;
 $database_MyConnectionPHP = “database”;
 $username_MyConnectionPHP = “usrname”;
 $password_MyConnectionPHP = “mypassword”;
 $connections = mysql_connect($hostname_MyConnectionPHP,
$username_MyConnectionPHP, $password_MyConnectionPHP) or die (“Unabale to connect to
the database”);
?>

Replace “database”, “usrname” and “mypassword” with the respective data that you use for the MySQL
database.

Time to search!

The following code is the core of our search engine. We will calculate the search time using a function,
make a database connection with another function, and finally we will check for matches with an
appropriate algorithm running a query to select a table to look for matches. Add the following code to your
Search.php page:

<?PHP
function getmicrotime()
{
 list($usec, $sec) = explode(“ “, microtime());
 return ((float)$usec + (float)$sec);
}

$connection_string = dirname(__FILE__) . “/connectionstring.php”;

require_once($connection_string);

mysql_select_db(“test”) or die (‘Unable to select database.’);

$RESULTS_LIMIT=10;

if(isset($_GET[‘search_term’]) && isset($_GET[‘search_button’]))
{
 $search_term = $_GET[‘search_term’];

 if(!isset($first_pos))
 {
 $first_pos = “0”;
 }

 $start_search = getmicrotime();
 $sql_query = mysql_query(“SELECT * FROM news WHERE MATCH(title,article)
AGAINST(‘$search_term’)”);

many mathces (too many matches cause returning of 0 results)
 if($results = mysql_num_rows($sql_query) != 0)
 {
 $sql = “SELECT * FROM news WHERE MATCH(title,article)
AGAINST(‘$search_term’) LIMIT $first_pos, $RESULTS_LIMIT”;
 $sql_result_query = mysql_query($sql);

Copyright © 2007 DMXzone.com All Rights Reserved

 }

To get more go to DMXzone.com
Page 3 of 10

How to build a PHP Search Engine
Kiril Iliev

 else
 {
 $sql = “SELECT * FROM news WHERE (title LIKE
‘%”.mysql_real_escape_string($search_term).”%’ OR article LIKE ‘%”.$search_term.”%’) “;
 $sql_query = mysql_query($sql);
 $results = mysql_num_rows($sql_query);
 $sql_result_query = mysql_query(“SELECT * FROM news WHERE (title LIKE
‘%”.$search_term.”%’ OR article LIKE ‘%”.$search_term.”%’) LIMIT $first_pos,
$RESULTS_LIMIT “);
 }

 $stop_search = getmicrotime();
 $time_search = ($stop_search - $start_search);
}
?>

Let’s take a closer look at the code. On the second line we initialize function to calculate the time for the
search.
The require_once function initializes a connection to the database – we simply call the connectionstring.php
file that we created earlier. With the line “mysql_select_db(“test”) or die (‘Unable to select database.’);” we
select our database table called test in our case. However, if for some reason a database is not selected the
“die” statement will bring a message that a database is not able to be selected. $RESULTS_LIMIT variable is
used to specify how many results to display per page.

Next we use an “if clause” to check if any phrase or word is set in the search field form. This is done with
$search_query. Then we check if our marker for page listing exists with $first_pos variable – if not we start from
the first page. Then we need to initialize a SQL query – simply with $sql_query. As you may know mysql_query
is a keyword in MySQL. Unfortunately, using that keyword has a major drawback. MySQL does not display
results of the phrases that are found in the database too often as it would display too many results. That is
why we do a second check. The algorithm counts the number of results with the $results variable and if it is
zero we run second query with a standard field search of the table with LIKE %...%.

NOTE: The function mysql_real_escape_string is a standard MySQL function used to check if the entered
value is legal, preventing the injection of malicious MySQL scripts into your database. For example,
somebody could enter an SQL query in your form to change your database. Using mysql_real_escape_string
 will make your search engine and database more secure.

Displaying the results

Now let’s display the results. We are going to use a usual loop where we have saved the first results via the
$results variable. We are arranging everything nicely in tables. That way our results will be separated and
ordered. If no results are found, the page will display the following message:

However, if results are found, the page should look like this:

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 4 of 10

How to build a PHP Search Engine
Kiril Iliev

OK, so back to Search.php where we have inserted our form. Modify the code as follows:

<?PHP
if($results != 0)
{
?>
 <table border=“0” cellspacing=“2” cellpadding=“2”>
 <tr>
 <td width=“47%”>Results for <?PHP echo “<i><font
color=#000000>“.$search_term.”</i> “; ?></td>
 <td width=“53%” align=“right” height=“22”>Results
 <?PHP echo ($first_pos+1).” - “;
 if(($RESULTS_LIMIT + $first_pos) < $results) echo ($RESULTS_LIMIT + $first_pos);
 else echo $results ; ?>

 out of <?PHP echo $results; ?>
 for(<?PHP echo sprintf(“%01.2f”, $time_search); ?>)
 seconds </td>
 </tr>
 <tr>
 <form action=““ method=“GET”>
 <td colspan=“2” align=“center”> <input name=“search_term” type=“text”
value=“<?PHP echo $search_term; ?>“ size=“40”>
 <input name=“search_button” type=“submit” value=“Search”> </td>
 </form>
 </tr>
 <?PHP
 while($row = mysql_fetch_array($sql_result_query))
 {
 ?>
 <tr align=“left”>
 <td colspan=“2”><?PHP echo $row[‘title’]; ?></td>
 </tr>
 <?PHP
 }
 ?>
</table>
<?PHP
}
elseif($sql_query)
{
?>
<table border=“0” cellspacing=“2” cellpadding=“0”>
 <tr>
 <td align=“center”>No results for <?PHP echo “<i><font
color=#000000>“.$search_term.”</i> “; ?></td>
 </tr>

Copyright © 2007 DMXzone.com All Rights Reserved

 <tr>

To get more go to DMXzone.com
Page 5 of 10

How to build a PHP Search Engine
Kiril Iliev

 <form action=““ method=“GET”>
 <td colspan=“2” align=“center”>
 <input name=“search_term” type=“text” value=“<?PHP echo $search_term; ?>“>
 <input name=“search_button” type=“submit” value=“Search”>
 </td>
 </form>
 </tr>
</table>
<?PHP
}
?>

Sorting into pages

Our final step is to show the number of result pages. We are calculating how many results the SQL query has
returned. We start by calculating the first position in order to place it in relevance. If the maximum number of
results is exceeded the algorithm creates a forward button for the user to switch to the next page. We
already have defined the maximum number per page via $RESULTS_LIMIT. If the user goes to the second
page of the results he can go back and check previous results with a back button. Well, these so called
buttons are not really buttons – they are simple “>>“ and “<<“ signs. Of course feel free to add your own
buttons, or even some flash images.

I am also using a PHP function stripslashes in order to escape some quotes. Why? I use it to clean the results
from the quotes in the MySQL query. That way the algorithm will not fail if any quotes are inserted.

We can do all this with the following code:
<?PHP
if($first_pos > 0)
{
 $back=$first_pos-$RESULTS_LIMIT;
 if($back < 0)
 {
 $back = 0;
 }
 echo “<a href=‘search.php?search_term=“.stripslashes($search_term).”&first_pos=$back’
>“;
}

if($results>$RESULTS_LIMIT)
{
 $sites=intval($results/$RESULTS_LIMIT);
 if($results%$RESULTS_LIMIT)
 {
 $sites++;
 }
}

for ($i=1;$i<=$sites;$i++)
{
 $fwd=($i-1)*$RESULTS_LIMIT;
 if($fwd == $first_pos)
 {
 echo “<a
href=‘search.php?search_term=“.stripslashes($search_term).”&first_pos=$fwd
‘>$i | “;

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 6 of 10

How to build a PHP Search Engine
Kiril Iliev

 }
 else
 {
 echo “$i |
“;
 }
}

if(isset($first_pos) && $first_pos < $results-$RESULTS_LIMIT)
{
 $fwd=$first_pos+$RESULTS_LIMIT;
 echo “<a href=‘search.php?search_term=“.stripslashes($search_term).”&first_pos=$fwd ‘
> >>“;
 $fwd=$results-$RESULTS_LIMIT;
}
?>
 </td>
 </tr>
</table>

This is the final piece of code in this article.

The next code block contains the entire code for the search engine. I’ve inserted comments so that you can
track the process:

<?PHP
function getmicrotime()
{
 list($usec, $sec) = explode(“ “, microtime());
 return ((float)$usec + (float)$sec);
}
//initializing connection to the database
$connection_string = dirname(__FILE__) . “/connectionstring.php”;
require_once($connection_string);
//selecting table
mysql_select_db(“test”) or die (‘Unable to select database.’);
//max number of results on the page
$RESULTS_LIMIT=10;
if(isset($_GET[‘search_term’]) && isset($_GET[‘search_button’]))
{
 $search_term = $_GET[‘search_term’];
 if(!isset($first_pos))
 {
 $first_pos = “0”;
 }
 $start_search = getmicrotime();
 //initializing MySQL Quary
 $sql_query = mysql_query(“SELECT * FROM news WHERE MATCH(title,article)
AGAINST(‘$search_term’)”);
 //additional check. Insurance method to re-search the database again in case of too
many matches (too many matches cause returning of 0 results)
 if($results = mysql_num_rows($sql_query) != 0)
 {
 $sql = “SELECT * FROM news WHERE MATCH(title,article)
AGAINST(‘$search_term’) LIMIT $first_pos, $RESULTS_LIMIT”;
 $sql_result_query = mysql_query($sql);

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 7 of 10

How to build a PHP Search Engine
Kiril Iliev

Copyright © 2007 DMXzone.com All Rights Reserved

 }
 else
 {
 $sql = “SELECT * FROM news WHERE (title LIKE
‘%”.mysql_real_escape_string($search_term).”%’ OR article LIKE ‘%”.$search_term.”%’) “;
 $sql_query = mysql_query($sql);
 $results = mysql_num_rows($sql_query);
 $sql_result_query = mysql_query(“SELECT * FROM news WHERE (title LIKE
‘%”.$search_term.”%’ OR article LIKE ‘%”.$search_term.”%’) LIMIT $first_pos,
$RESULTS_LIMIT “);
 }
 $stop_search = getmicrotime();
 //calculating the search time
 $time_search = ($stop_search - $start_search);
}
?>
<?PHP
if($results != 0)
{
?>
 <!-- Displaying of the results -->
<table border=“0” cellspacing=“2” cellpadding=“2”>
 <tr>
 <td width=“47%”>Results for <?PHP echo “<i><font
color=#000000>“.$search_term.”</i> “; ?></td>
 <td width=“53%” align=“right” height=“22”>Results
 <?PHP echo ($first_pos+1).” - “;
 if(($RESULTS_LIMIT + $first_pos) < $results) echo ($RESULTS_LIMIT + $first_pos);
 else echo $results ; ?>

 out of <?PHP echo $results; ?>
 for(<?PHP echo sprintf(“%01.2f”, $time_search); ?>)
 seconds </td>
 </tr>
 <tr>
 <form action=““ method=“GET”>
 <td colspan=“2” align=“center”> <input name=“search_term” type=“text”
value=“<?PHP echo $search_term; ?>“ size=“40”>
 <input name=“search_button” type=“submit” value=“Search”> </td>
 </form>
 </tr>
 <?PHP
 while($row = mysql_fetch_array($sql_result_query))
 {
 ?>
 <tr align=“left”>
 <td colspan=“2”><?PHP echo $row[‘title’]; ?></td>
 </tr>
 <?PHP
 }
 ?>
</table>
<?PHP
}
//if nothing is found then displays a form and a message that there are nor results for
the specified term
elseif($sql_query)
{

To get more go to DMXzone.com
Page 8 of 10

How to build a PHP Search Engine
Kiril Iliev

Copyright © 2007 DMXzone.com All Rights Reserved

?>
<table border=“0” cellspacing=“2” cellpadding=“0”>
 <tr>
 <td align=“center”>No results for <?PHP echo “<i><font
color=#000000>“.$search_term.”</i> “; ?></td>
 </tr>
 <tr>
 <form action=““ method=“GET”>
 <td colspan=“2” align=“center”>
 <input name=“search_term” type=“text” value=“<?PHP echo $search_term; ?>“>
 <input name=“search_button” type=“submit” value=“Search”>
 </td>
 </form>
 </tr>
</table>
<?PHP
}
?>
<table width=“300” border=“0” cellspacing=“0” cellpadding=“0”>
 <?php
 if (!isset($_GET[‘search_term’])) { ?>
 <tr>
 <form action=““ method=“GET”>
 <td colspan=“2” align=“center”>
 <input name=“search_term” type=“text” value=“<?PHP echo $search_term; ?>“>
 <input name=“search_button” type=“submit” value=“Search”>
 </td>
 </form>
 </tr>
 <?php
 }
 ?>
 <tr>
 <td align=“right”>
<?PHP
//displaying the number of pages where the results are sittuated
if($first_pos > 0)
{
 $back=$first_pos-$RESULTS_LIMIT;
 if($back < 0)
 {
 $back = 0;
 }
 echo “<a href=‘search.php?search_term=“.stripslashes($search_term).”&first_pos=$back’
>“;
}
if($results>$RESULTS_LIMIT)
{
 $sites=intval($results/$RESULTS_LIMIT);
 if($results%$RESULTS_LIMIT)
 {
 $sites++;
 }
}
for ($i=1;$i<=$sites;$i++)
{
 $fwd=($i-1)*$RESULTS_LIMIT;
 if($fwd == $first_pos)

To get more go to DMXzone.com
Page 9 of 10

How to build a PHP Search Engine
Kiril Iliev

 {
 echo “<a
href=‘search.php?search_term=“.stripslashes($search_term).”&first_pos=$fwd
‘>$i | “;
 }
 else
 {
 echo “$i |
“;
 }
}
if(isset($first_pos) && $first_pos < $results-$RESULTS_LIMIT)
{
 $fwd=$first_pos+$RESULTS_LIMIT;
 echo “<a href=‘search.php?search_term=“.stripslashes($search_term).”&first_pos=$fwd ‘
> >>“;
 $fwd=$results-$RESULTS_LIMIT;
}
?>
 </td>
 </tr>
</table>

Do not forget to upload the files connectionstring.php and Search.php in the same directory on your server.

Preview your page and test it. Just open it in your favourite web browser and type in some words. Make sure
that your table is filled with some of these words otherwise it will return you that there are no results found.

Conclusion
That’s all we need. Our PHP search engine is running smoothly, fast and accurate! We might add some
JavaScript functions from an external file, as well some brief CSS rules to make it fancier and give it a
pleasant look. In addition, you may want to try combining it with one of our extensions – Ajax Autocomplete.
Once you bind the extension to the input form in the code we have just created, it will add auto-complete
functionality to the PHP Search Engine. When a user starts entering a phrase a list of suggested search terms
will be displayed. Very nice, right?

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 10 of 10

http://www.dmxzone.com/showDetail.asp?TypeId=3&NewsId=14111

	How to build a PHP Search Engine
	Introduction or a tale of how easy a search engine could work
	Beginning of the search page…
	Connecting...
	Time to search!
	Displaying the results
	Sorting into pages
	Conclusion

