
Top 10 Application Security Vulnerabilities in Web.config Files – Part one
Bryan Sullivan

Top 10 Application Security Vulnerabilities in Web.config Files – Part
One

These days, the biggest threat to an organization’s network security comes from its public Web site and the
Web-based applications found there. Unlike internal-only network services such as databases—which can
be sealed off from the outside via firewalls—a public Web site is generally accessible to anyone who wants
to view it, making application security an issue. As networks have become more secure, vulnerabilities in
Web applications have inevitably attracted the attention of hackers, both criminal and recreational, who
have devised techniques to exploit these holes. In fact, attacks upon the Web application layer now exceed
those conducted at the network level, and can have consequences which are just as damaging.

Some enlightened software architects and developers are becoming educated on these threats to
application security and are designing their Web-based applications with security in mind. By “baking in”
application security from the start of the development process, rather than trying to “brush it on” at the end,
you are much more likely to create secure applications that will withstand hackers’ attacks. However, even
the most meticulous and security-aware C# or VB.NET code can still be vulnerable to attack if you neglect to
secure the Web.config configuration files of your application. Incorrectly configured Web-based
applications can be just as dangerous as those that have been incorrectly coded. To make matters worse,
many configuration settings actually default to insecure values.

This article lists five of the “worst offenders” of misconfigurations of application security that are universally
problematic for all ASP.NET Web-based applications. Part two of this article will list an additional five
misconfigurations that are specifically applicable to ASP.NET sites that use Web Forms authentication. So
without further ado, let’s get started!

1. Custom Errors Disabled
When you disable custom errors as shown below, ASP.NET provides a detailed error message to clients by
default.

Vulnerable configuration:
<configuration>
 <system.web>
 <customErrors mode=“Off”>

Secure configuration:
<configuration>
 <system.web>
 <customErrors mode=“RemoteOnly”>

In itself, knowing the source of an error may not seem like a risk to application security, but consider this: the
more information a hacker can gather about a Web site, the more likely it is that he will be able to
successfully attack it. An error message can be a gold mine of information to an attacker. A default ASP.NET
error message lists the specific versions of ASP.NET and the .NET framework which are being used by the Web
server, as well as the type of exception that was thrown. Just knowing which Web-based applications are
used (in this case ASP.NET) compromises application security by telling the attacker that the server is running
a relatively recent version of Microsoft Windows and that Microsoft Internet Information Server (IIS) 6.0 or later
is being used as the Web server. The type of exception thrown may also help the attacker to profile Web-
based applications; for example, if a SqlException is thrown, then the attacker knows that the application is
using some version of Microsoft SQL Server.

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 1 of 5

Top 10 Application Security Vulnerabilities in Web.config Files – Part one
Bryan Sullivan

You can build up application security to prevent such information leakage by modifying the mode attribute
of the customErrors element to On or RemoteOnly. This setting instructs Web-based applications to display
a nondescript, generic error message when an unhandled exception is generated. Another way to
circumvent this application security issue is to redirect the user to a new page when errors occur by setting
the defaultRedirect attribute of the customErrors element. This approach can provide even better
application security because the default generic error page still gives away too much information about the
system (namely, that it’s using a Web.config file, which reveals that the server is running ASP.NET).

2. Leaving Tracing Enabled in Web-Based Applications
The trace feature of ASP.NET is one of the most useful tools that you can use to ensure application security by
debugging and profiling your Web-based applications. Unfortunately, it is also one of the most useful tools
that a hacker can use to attack your Web-based applications if it is left enabled in a production
environment.

Vulnerable configuration:
<configuration>
 <system.web>
 <trace enabled=“true” localOnly=“false”>

Secure configuration:
<configuration>
 <system.web>
 <trace enabled=“false” localOnly=“true”>

When the trace element is enabled for remote users of Web-based applications (localOnly=“false”), any
user can view an incredibly detailed list of recent requests to the application simply by browsing to the page
trace.axd. If a detailed exception message is like a gold mine to a hacker looking to circumvent application
security, a trace log is like Fort Knox! A trace log presents a wealth of information: the .NET and ASP.NET
versions that the server is running; a complete trace of all the page methods that the request caused,
including their times of execution; the session state and application state keys; the request and response
cookies; the complete set of request headers, form variables, and QueryString variables; and finally the
complete set of server variables.

A hacker looking for a way around application security would obviously find the form variable histories useful
because these might include email addresses that could be harvested and sold to spammers, IDs and
passwords that could be used to impersonate the user, or credit card and bank account numbers. Even the
most innocent-looking piece of data in the trace collection can be dangerous in the wrong hands. For
example, the APPL_PHYSICAL_PATH server variable, which contains the physical path of Web-based
applications on the server, could help an attacker perform directory traversal attacks against the system.

The best way to prevent a hacker from obtaining trace data from Web-based applications is to disable the
trace viewer completely by setting the enabled attribute of the trace element to false. If you have to have
the trace viewer enabled, either to debug or to profile your application, then be sure to set the localOnly
attribute of the trace element to true. That allows users to access the trace viewer only from the Web server
and disables viewing it from any remote machine, increasing your application security.

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 2 of 5

Top 10 Application Security Vulnerabilities in Web.config Files – Part one
Bryan Sullivan

3. Debugging Enabled
Deploying Web-based applications in debug mode is a very common mistake. Virtually all Web-based
applications require some debugging. Visual Studio 2005 will even automatically modify the Web.config file
to allow debugging when you start to debug your application. And, since deploying ASP.NET applications is
as simple as copying the files from the development folder into the deployment folder, it’s easy to see how
development configuration settings can accidentally make it into production, compromising application
security.

Vulnerable configuration:
<configuration>
 <system.web>
 <compilation debug=“true”>

Secure configuration:
<configuration>
 <system.web>
 <compilation debug=“false”>

Like the first two application security vulnerabilities described in this list, leaving debugging enabled is
dangerous because you are providing inside information to end users who shouldn’t have access to it, and
who may use it to attack your Web-based applications. For example, if you have enabled debugging and
disabled custom errors in your application, then any error message displayed to an end user of your Web-
based applications will include not only the server information, a detailed exception message, and a stack
trace, but also the actual source code of the page where the error occurred.

Unfortunately, this configuration setting isn’t the only way that source code might be displayed to the user.
Here’s a story that illustrates why developers shouldn’t concentrate solely on one type of configuration
setting to improve application security. In early versions of Microsoft’s ASP.NET AJAX framework, some
controls would return a stack trace with source code to the client browser whenever exceptions occurred.
This behavior happened whenever debugging was enabled, regardless of the custom error setting in the
configuration. So, even if you properly configured your Web-based applications to display non-descriptive
messages when errors occurred, you could still have unexpectedly revealed your source code to your end
users if you forgot to disable debugging.

To disable debugging, set the value of the debug attribute of the compilation element to false. This is the
default value of the setting, but as we will see in part two of this article, it’s safer to explicitly set the desired
value rather than relying on the defaults to protect application security.

4. Cookies Accessible through Client-Side Script
In Internet Explorer 6.0, Microsoft introduced a new cookie property called HttpOnly. While you can set the
property programmatically on a per-cookie basis, you also can set it globally in the site configuration.

Vulnerable configuration:
<configuration>
 <system.web>
 <httpCookies httpOnlyCookies=“false”>

Secure configuration:
<configuration>
 <system.web>
 <httpCookies httpOnlyCookies=“true”>

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 3 of 5

Top 10 Application Security Vulnerabilities in Web.config Files – Part one
Bryan Sullivan

Any cookie marked with this property will be accessible only from server-side code, and not to any client-
side scripting code like JavaScript or VBScript. This shielding of cookies from the client helps to protect Web-
based applications from Cross-Site Scripting attacks. A hacker initiates a Cross-Site Scripting (also called CSS
or XSS) attack by attempting to insert his own script code into the Web page to get around any application
security in place. Any page that accepts input from a user and echoes that input back is potentially
vulnerable. For example, a login page that prompts for a user name and password and then displays
“Welcome back, username” on a successful login may be susceptible to an XSS attack.

Message boards, forums, and wikis are also often vulnerable to application security issues. In these sites,
legitimate users post their thoughts or opinions, which are then visible to all other visitors to the site. But an
attacker, rather than posting about the current topic, will instead post a message such as:
<script>alert(document.cookie);</script>

The message board now includes the attacker’s script code in its page code—and the browser then
interprets and executes it for future site visitors. Usually attackers use such script code to try to obtain the
user’s authentication token (usually stored in a cookie), which they could then use to impersonate the user.
When cookies are marked with the HttpOnly property, their values are hidden from the client, so this attack
will fail.

As mentioned earlier, it is possible to enable HttpOnly programmatically on any individual cookie by setting
the HttpOnly property of the HttpCookie object to true. However, it is easier and more reliable to configure
the application to automatically enable HttpOnly for all cookies. To do this, set the httpOnlyCookies attribute
of the httpCookies element to true.

5. Cookieless Session State Enabled
In the initial 1.0 release of ASP.NET, you had no choice about how to transmit the session token between
requests when your Web application needed to maintain session state: it was always stored in a cookie.
Unfortunately, this meant that users who would not accept cookies could not use your application. So, in
ASP.NET 1.1, Microsoft added support for cookieless session tokens via use of the “cookieless” setting.

Vulnerable configuration:
<configuration>
 <system.web>
 <sessionState cookieless=“UseUri”>

Secure configuration:
<configuration>
 <system.web>
 <sessionState cookieless=“UseCookies”>

Web applications configured to use cookieless session state now stored the session token in the page URLs
rather than a cookie. For example, the page URL might change from
http://myserver/MyApplication/default.aspx to
http://myserver/MyApplication/(123456789ABCDEFG)/default.aspx. In this case, 123456789ABCDEFG
represents the current user’s session token. A different user browsing the site at the same time would receive
a completely different session token, resulting in a different URL, such as
http://myserver/MyApplication/(ZYXWVU987654321)/default.aspx.

Copyright © 2007 DMXzone.com All Rights Reserved

While adding support for cookieless session state did improve the usability of ASP.NET Web applications for
users who would not accept cookies, it also had the side effect of making those applications much more
vulnerable to session hijacking attacks. Session hijacking is basically a form of identity theft wherein a hacker

To get more go to DMXzone.com
Page 4 of 5

Top 10 Application Security Vulnerabilities in Web.config Files – Part one
Bryan Sullivan

impersonates a legitimate user by stealing his session token. When the session token is transmitted in a
cookie, and the request is made on a secure channel (that is, it uses SSL), the token is secure. However,
when the session token is included as part of the URL, it is much easier for a hacker to find and steal it. By
using a network monitoring tool (also known as a “sniffer”) or by obtaining a recent request log, hijacking the
user’s session becomes a simple matter of browsing to the URL containing the stolen unique session token.
The Web application has no way of knowing that this new request with session token “123456789ABCDEFG” is
not coming from the original, legitimate user. It happily loads the corresponding session state and returns the
response back to the hacker, who has now effectively impersonated the user.

The most effective way to prevent these session hijacking attacks is to force your Web application to use
cookies to store the session token. This is accomplished by setting the cookieless attribute of the sessionState
element to UseCookies or false. But what about the users who do not accept cookies? Do you have to
choose between making your application available to all users versus ensuring that it operates securely for
all users? A compromise between the two is possible in ASP.NET 2.0. By setting the cookieless attribute to
AutoDetect, the application will store the session token in a cookie for users who accept them and in the URL
for those who won’t. This means that only the users who use cookieless tokens will still be vulnerable to session
hijacking. That’s often acceptable, given the alternative—that users who deny cookies wouldn’t be able to
use the application at all. It is ironic that many users disable cookies because of privacy concerns when
doing so can actually make them more prone to attack.

Intermission
These first five Web.config vulnerabilities that we’ve discussed in this article have been applicable to all
ASP.NET Web applications regardless of their methods of authentication, or even whether they use
authentication at all. Part two of this article details an additional five vulnerabilities that apply only to
applications using Forms authentication. These misconfigurations can be even more dangerous than the first
five, giving intruders the ability to access supposedly secure areas of your Web site. Finally, we will also
discuss some methods of locking down your configuration files so that they can’t be modified unintentionally.

Copyright © 2007 DMXzone.com All Rights Reserved
To get more go to DMXzone.com

Page 5 of 5

	Top 10 Application Security Vulnerabilities in Web.config Files – Part One
	1. Custom Errors Disabled
	2. Leaving Tracing Enabled in Web-Based Applications
	3. Debugging Enabled
	4. Cookies Accessible through Client-Side Script
	5. Cookieless Session State Enabled
	Intermission

